Nucleophilic Substitution Reactions and Benchtop NMR

Nucleophilic Substitution Reactions and Benchtop NMR

Nucleophilic substitution reactions are frequently performed as an experiment in undergraduate organic chemistry courses. Reactions taking place at saturated carbons are mainly classified as SN1 or SN2, where S stands for substitution, N for nucleophilic, and the number indicates the molecularity of the reaction (1 for a unimolecular process, 2 for a bimolecular process). In the SN2 reaction the attack of the nucleophile and elimination of the leaving group occur simultaneously in a concerted process and its rate is proportional to the concentration of both the alkyl halide and the nucleophile.

Read More

To apodize or not to apodize - the age old question

To apodize or not to apodize - the age old question

Are you familiar with the Apodization tool in Mnova? Apodization (also referred to as Weighting or Windowing) literally translates to ‘cutting off the feet’ from the original Greek. In this case, the ‘feet’ are the leakage or wiggles that appears when the NMR signal rapidly decays to zero. As such, apodization can enhance the resolution or the sensitivity (S/N ratio) in the spectrum and even remove truncation artefacts after data has been collected. This function is particularly useful for spectra acquired on a benchtop NMR instrument due to the lower S/N ratio compared to spectra collected on high-field instruments.

Read More

Undergraduate Experiment: Instrumental Analysis of Spectrometers

Undergraduate Experiment: Instrumental Analysis of Spectrometers

After installing the NMReady at SIAST, I had the unique opportunity to participate in a laboratory experiment when the students were not using the spectrometer as a tool for structural elucidation, 

Read More