2D NMR Experiments - HETCOR

2D NMR Experiments -  HETCOR

2D NMR experiments can provide an abundance of information for the structural elucidation of chemical compounds. An older example of a 2D experiment is the heteronuclear correlation (HETCOR) sequence. In this experiment, two different nuclei (usually 13C and1H) are correlated through single bond spin-spin coupling, revealing which proton and carbon groups are bonded to each other.

Read More

Getting COSY with the TOCSY Experiment

Getting COSY with the TOCSY Experiment

2D NMR experiments can provide a wealth of information to aid in the structural elucidation of chemical compounds. Of the many 2D NMR experiments available, the homonuclear correlation spectroscopy (COSY) sequence is one of the most popular and is used to identify which spin systems are directly coupled to each other. As an example, the 1H-1H COSY spectrum of 1-propanol recorded on the NMReady-60 is shown below in Figure 1.

Read More

Beyond Structural Elucidation - Introduction to qNMR Part III - Relaxation Delays

Beyond Structural Elucidation - Introduction to qNMR Part III - Relaxation Delays

In this blog, Part III of the qNMR series, I will be addressing relaxation and why it's important for quantitative nuclear magnetic resonance (qNMR) experiments. If this is your first time reading about qNMR and would like to know more, please check out our other posts where you can find a general introduction to qNMR as well as information for the types of calibrants available for qNMR experiments.

Read More

Beyond Structure Elucidation - Introduction to qNMR Part II - Calibrants

Beyond Structure Elucidation - Introduction to qNMR Part II - Calibrants

In my previous blog post, I introduced several concepts that are relevant to the qNMR experiment. In this blog post, I will talk about how to select a suitable calibrant as well as the difference between using an internal and external calibrant.

Read More

Beyond structural elucidation, introduction to qNMR – Part I

Beyond structural elucidation, introduction to qNMR – Part I

Over the last few years, more and more analytical and industrial laboratories have started employing quantitative nuclear magnetic resonance (qNMR) spectroscopy as a tool for content assignment (due to its superb structural elucidation abilities) and quantification of purity in a sample. This is due to the increase in regulations being imposed by governments onto the pharmaceutical and environmental sectors. It has been previously demonstrated that qNMR spectroscopy can give results with less than 1% uncertainty and possibly down to 0.1% if the right conditions are met.

Read More

HSQC – Revealing the direct-bonded proton-carbon instrument

HSQC – Revealing the direct-bonded proton-carbon instrument

2D NMR experiments provide chemists with evidence to clarify and confirm resonance assignment.  Nowadays every organic chemist uses these experiments called COSY, HMBC and HSQC as routine analytics. Basically, with 2D experiments you correlate some kind of information between two 1D spectra. If we correlate two 1D spectra of the same nucleus we are dealing with homonuclear 2D NMR experiments. The most famous representative of this group is the COSY experiment (find theory here and application here).

Read More

Lead NMR Spectroscopy

Lead NMR Spectroscopy

For many years tetraethyl lead was used as the principal fuel additive to enhance the octane rating of gasoline. In the mid-1970s the use of this substance was reduced because of the environmental hazards of lead and because it poisons catalytic converters. Nowadays, the main application of lead metal and lead oxide is in lead-acid batteries. In this application the cathode of the cell consists of lead dioxide packed on a metal grid and the anode is composed of lead metal. The electrochemical reaction is shown in the following equation:

Read More

Unlocking the Key to Enzymes: Studying Enzyme Kinetics

Unlocking the Key to Enzymes: Studying Enzyme Kinetics

By virtue of its quantitative nature, NMR spectroscopy is increasingly becoming the method of choice to monitor a reaction and determine its kinetic parameters. We’ve demonstrated the ability of the NMReady-60 to monitor a reaction and subsequently extract kinetic parameters in a previous blog post. In this blog post, I’d like to show how the NMReady-60 can be used to study enzyme kinetics. Adapted from a Journal of Chemical Education article published by Olsen and Giles, the enzymatic hydrolysis of N-acetyl-DL-methionine by porcine acylase was studied.

Read More

Spine disease? No, just a rigid backbone, but it keeps from flippin’ the ring!

Spine disease? No, just a rigid backbone, but it keeps from flippin’ the ring!

For this one I must begin with a little personal background information due to my special relationship to the scaffold of the target compound. During my diploma thesis I investigated gold(I) phosphine complexes as catalysts for the intermolecular hydroamidation of olefins.[1] I found that dinuclear gold complex showed superior reaction times and yields compared to mononuclear complexes, like Ph3PAuCl. This particular dinuclear complex [xantphos(AuCl)2] (1) was kicking the reaction of norbornene (2) and tosyl amide (3) and made my first academic publication possible (scheme 1).

Read More