

Heteronuclear J-Coupling on benchtop NMR

Peak area of ¹³C satellites in ¹H NMR

 δ (100 MHz, D₂O) = 1.34 (dd, $^{1}J_{CH}$ = 125.2 Hz, $^{3}J_{HH}$ = 6.2 Hz) ppm

n+1

Simplified Splitting and
Multiplicity rule
(for nuclides with spin of ½)

where n = number of
equivalent neighboring nuclei

$$\frac{1.1}{2} = 0.55$$

The peak areas of both satellite doublets corresponds to the signal split by proton and carbon-13

Emergence of ¹³C satellites in ¹H NMR

In 1 H NMR spectrum of isopropanol we observe the homonuclear $^3J_{\rm HH}$ coupling, which leads to the splitting pattern of the methine (septet) and methyl (doublet) signals. Due to the isotopic ratio of carbon, 98.9% of the protons in isopropanol will be bonded to carbon-12, which is an NMR silent isotope, and no heteronuclear coupling will be observed. However, 1.1% of the methyl protons are attached to carbon-13, resulting in $^1J_{\rm CH}$ heteronuclear coupling, which splits the signal further into a doublet of doublets around the central doublet.

