In table 1.0, we observe the predictable decrease in S/N with decreasing size of tube – and therefore volume. This is consistent with a decrease in the ‘number molecules’ being analyzed, as well as with the decreasing filling factor, but we can discuss that more in another blog.
Keep in mind that these samples have the same concentration; however, the small volume offers us the unique opportunity to use the same amount of analyte but, owing to the lower sample volume, significantly concentrate the sample. Let’s do a little bit of math and see how much we can actually improve our S/N by running more concentrated samples in smaller tubes. If we assume that the average molecular weight of an organic molecule is 300 g mol-1 and that we only have 0.5 mg of analyte, we can make the following solutions: 2.78 mM, 10.4 mM and 33.3 mM for the 5mm, 3mm and 1.67mm tubes, respectively (table 2.0).
From table 1.0 we see that the S/N decreases to half if we move from the 5mm to the 3mm NMR tube. Therefore, we would need to double the concentration in the 3mm NMR tube in order to get the same S/N as in the 5mm NMR tube. The decrease in volume allows us to prepare a solution that is almost 3.7 times as concentrated, which means that at the end we would have a S/N close to 1.85 times higher than the same analyte in a 5mm NMR tube.
Likewise, if the same analyte were used to prepare a solution for the capillary tube (0.05 mL) the concentration would be close to 12 times higher. This means that the improvement in S/N would be close to 3 times higher compared to the same analyte in the 5 mm NMR tube.