Welcome to Nanalysis’ benchtop NMR Blog

Woman with long hair sitting at a cluttered wooden desk near a large window, working on a laptop, holding a cup, with a backpack and various items on the desk.
Request a quote
Talk to our NMR experts

We love benchtop NMR! In this blog section, you will find all things benchtop NMR. Please contact us if you would like to discuss about your project.

Educational Alexander Köring Educational Alexander Köring

HSQC – Revealing the direct-bonded proton-carbon instrument

2D NMR experiments provide chemists with evidence to clarify and confirm resonance assignment.  Nowadays every organic chemist uses these experiments called COSY, HMBC and HSQC as routine analytics. Basically, with 2D experiments you correlate some kind of information between two 1D spectra. If we correlate two 1D spectra of the same nucleus we are dealing with homonuclear 2D NMR experiments. The most famous representative of this group is the COSY experiment (find theory here and application here).

Read More
Educational Juan Araneda Educational Juan Araneda

Lead NMR Spectroscopy

For many years tetraethyl lead was used as the principal fuel additive to enhance the octane rating of gasoline. In the mid-1970s the use of this substance was reduced because of the environmental hazards of lead and because it poisons catalytic converters. Nowadays, the main application of lead metal and lead oxide is in lead-acid batteries. In this application the cathode of the cell consists of lead dioxide packed on a metal grid and the anode is composed of lead metal. The electrochemical reaction is shown in the following equation:

Read More
Educational Alexander Köring Educational Alexander Köring

Your NMReady-60 Order!

‘The spectra were analyzed according to first order’. Does this sound familiar to you? Most of the supporting information documents out there contain this sentence. You find yourself asking ‘why does nobody care about second order effects?’, then check out this high-order blog entry on the topic.

Read More
Educational Juan Araneda Educational Juan Araneda

The NMR tube....for any occasion

We have recurring interest from industrial customers (e.g., pharma, flavour/fragrances) to acquire spectra using only small amounts of analyte in our benchtop NMR instruments – considerably less than our recommended 0.1 M concentration (link).  Why is our recommended concentration so high?  Well, it’s reflective of the consequences of a low-field instrument.  That is, lower-field results in inherently lower sensitivity and accordingly a decrease in observed signal to noise ratio (S/N).

Read More
Educational Terry Chu Educational Terry Chu

Eat Your Heart Out Mass Spec: Measuring 10B/11B Isotopic Ratio by NMR Spectroscopy

As I’m sure the readers of this blog know, NMR spectroscopy is used widely across all branches of chemistry due to its powerful structure elucidation capabilities and the inherently quantitative nature of the technique. Organic relies primarily on 1H/13C experiments where as inorganic chemistry can expand to other nuclei, like 31P and 11B. However, there are many other applications for NMR other than just structural elucidation. Perhaps a lesser known application of NMR spectroscopy, is its ability to determine the isotopic ratio of elements! In this blog post I would like to demonstrate a novel method to determine the 10B/11B isotopic ratio using our NMReady-60e and 1H NMR spectra!

Read More
Educational, Industry James Grebinski Educational, Industry James Grebinski

Small Molecule Drug Discovery: From countertop to over-the-counter

Drug discovery is a multi-billion dollar industry and chemists play an integral role in many points on the drug discovery roadmap.  To ensure the best possible drug candidate can be produced in the fastest, most efficient and economically friendly fashion, chemists perform innovative research from early-state development through the scaling-up process.  Many analytical techniques including Nuclear Magnetic Resonance (NMR) spectroscopy are crucial in the drug discovery process and chemists use these tools daily to characterize reaction products every step of the way.  Once a chemist’s reaction is complete and the desired product isolated, an NMR spectrum of the isolate is acquired.  The chemist then interprets the spectrum by assigning the peaks in the spectrum to the unique sets of protons (1H), or other atoms (13C, 31P, 19F, 11B, etc.), in their desired molecule; corroborating they have made what they sought to make when the reaction was started.

Read More
Educational Matt Zamora Educational Matt Zamora

Think INSIDE the box! Running NMR in the Glovebox

There are all sorts of different research areas in chemistry. Consider my path, for example. When I was just a young undergrad trying to find my calling, I loved tackling mechanisms for organic reactions, but I also loved the “breaking all the rules” in inorganic chemistry. In trying to decide which route I wanted to take, Prof. Stephen Westcott introduced me to the best of both worlds: organo-metallic chemistry. You get all sorts of crazy colours and many of the molecules disobey the conventional rules! You need to be careful though, because many of them will react instantly with water and oxygen. And I mean instantly! For example, although an incredibly simple organometallic molecule, tert-butyllithium (t-BuLi) is incredibly dangerous since it catches fire at the slightest hint of air.

Read More